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Summary Introduction

X-chromosome inactivation results in the cis-limited inacti- Early in the development of mammalian females, one of
vation of many, but not all, of the genes on one of the pair the pair of X chromosomes is inactivated, presumably
of X chromosomes in mammalian females. In addition to to achieve dosage equivalence with males, who have
the genes from the pseudoautosomal region, which have only a single X chromosome. The initial hypothesis of
long been anticipated to escape inactivation, genes from sev- X-chromosome inactivation (Lyon 1961; Beutler et al.
eral other regions of the human X chromosome have now 1962) was quickly followed by direct evidence for inacti-
been shown to escape inactivation and to be expressed from vation of the human glucose-6-phosphate dehydroge-
both the active and inactive X chromosomes. The growing nase gene (G6PD), based on clonal expression in hetero-
number of genes escaping inactivation emphasizes the need zygous females (Davidson et al. 1963). Subsequently,
for a reliable system for assessing the inactivation status of many human genes have been shown to be subject to
X-linked genes. Since many features of the active or inactive X inactivation (reviewed in Willard 1995). However,
X chromosome, including transcriptional activity, are main- although it had been widely accepted that all X-linked
tained in rodent/human somatic-cell hybrids, such hybrids genes except those in the pseudoautosomal region would
have been used to study the inactivation process and to be subject to X inactivation, recent evidence has shown
determine the inactivation status of human X-linked genes. that there are many genes that ‘‘escape’’ X inactivation,
In order to assess the fidelity of inactivation status in such being expressed from both the active X chromosome
hybrids, we have examined the expression of 33 X-linked (Xa) and the inactive X chromosome (Xi). The majority
genes in eight mouse/human somatic-cell hybrids that con- of these genes have Y-chromosome homologues and ap-
tain either the human active (three hybrids) or inactive X pear to cluster together in regions of the short arm of
(five hybrids) chromosome. Inactivation of nine of these the X chromosome. However, genes without Y-linked
genes had previously been demonstrated biochemically in homologues and genes on the long arm of the X chromo-
human cells, and the expression of these genes only in hy- some have also been shown to escape X inactivation
brids retaining an active X, but not in those retaining an (reviewed in Disteche 1995). Knowledge of whether a
inactive X, confirms that expression in hybrids reflects ex- gene is expressed solely from the Xa is important for
pression in human cells. Although the majority of genes the clinical assessment of females heterozygous for X-
tested showed consistent patterns of expression among the linked diseases, and genes that escape X inactivation are
active X hybrids or inactive X hybrids, surprisingly, 5 of candidates for being involved in the phenotype of Turner
the 33 genes showed heterogeneous expression among the syndrome (Zinn et al. 1993). Furthermore, determina-
hybrids, demonstrating a significantly higher rate of variabil- tion of which genes escape the inactivation process will
ity than previously reported for other genes in either human help in the elucidation of the chromosomal mechanisms
somatic cells or mouse/human somatic-cell hybrids. These involved in X-chromosome inactivation.
data suggest that at least some X-linked genes may be under Evidence for inactivation of a gene has been derived
additional levels of epigenetic regulation not previously rec- either from the observed mosaic expression of the gene
ognized and that somatic-cell hybrids may provide a useful product in heterozygous females or from equivalent ex-
approach for studying these chromosomal phenomena. pression of a gene product (RNA or protein) in individu-

als with different numbers of inactive X chromosomes.
Although such direct evidence has been reported for only

Received January 30, 1997; accepted for publication April 15, 1997.
a few dozen X-linked genes, indirect evidence for inacti-Address for correspondence and reprints: Dr. Huntington F. Wil-
vation has been reported for a large number of loci,lard, Department of Genetics, BRB 731, Case Western Reserve Univer-

sity School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106- on the basis of criteria such as (1) mosaic or variable
4955. E-mail: HFW@po.CWRU.edu expression of an X-linked disease phenotype in hetero-

*Present affiliation: Department of Medical Genetics, University of zygous females; (2) clonal selection, resulting in nonran-
British Columbia, Vancouver.

dom inactivation of the X chromosome with the mutant� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6006-0011$02.00 allele; and (3) expression of the disease in females with

1333

/ 9a2a$$ju48 05-19-97 10:51:51 ajhga UC-AJHG



1334 Am. J. Hum. Genet. 60:1333–1343, 1997

an X; autosome translocation disrupting the gene and containing hybrids (t60-12 and AHA11aB1) and one
of the Xi-containing hybrids (LT23-1E2Buv5Cl26-7A2)accompanied by nonrandom inactivation of the intact

X chromosome (reviewed in Brown and Willard 1993; do not retain any other identified human chromosomes.
The other four Xi-containing hybrids retain 1–12 hu-Willard 1995). Such analyses require a detectable prod-

uct, rare chromosomal rearrangement, expressed poly- man autosomes, with no autosome being common to all
four (Willard et al. 1993). Hybrids A23-1aCl5 andmorphism, or careful dosage analyses and therefore are

not generally applicable to the growing number of genes LT23-1E2Buv5Cl26-7A2 were derived from fusion of
mouse cells with the same human parental line, and, onnow being identified on the human X chromosome by

molecular and genomic techniques. Furthermore, these the basis of analysis of polymorphic loci, the hybrid lines
appear to retain the same X chromosome, in the activeindirect analyses can be misleading if there is decreased

expression from the Xi (as observed for STS [Migeon et state and inactive state, respectively (Carrel et al. 1996).
Although four of the Xi-containing hybrids were main-al. 1982a]), putative modifiers of expression (e.g., the

BGN gene [Geerkens et al. 1995]), or pseudomosaicism tained under selective pressure for the Xi (Brown and
Willard 1989), LT23-1E2Buv5Cl26-7A2 is the only hy-(such as has been reported for G6PD [Papayannopoulou

and Stamatoyannopoulos 1964]). As an alternative and/ brid for which there is no selection for retention of the
active or inactive X chromosome. Cytogenetic analysisor complementary approach, the use of rodent/human

somatic-cell hybrids that segregate the human Xa and indicated that this hybrid retains an X chromosome in
Ç15%–20% of cells. Where studied, DNA methylationXi in a rodent background is a straightforward tech-

nique for systematically assessing the inactivation status analysis, enzyme assays, and replication-timing studies
were consistent with the active or inactive nature of theof genes that are expressed in the hybrid cell line.

Expression studies have shown that hybrids retaining X chromosome in each hybrid (Brown and Willard
1989; Carrel and Willard 1996).the human Xa or Xi reflect the activity of a limited

number of X-linked genes in human cells (Migeon 1972;
Reverse-Transcriptase–PCR Analysis (RT-PCR)Migeon et al. 1974; Kahan and DeMars 1975; Graves

and Gartler 1986). However, since a large number of Cells were harvested, at confluence, with trypsin-
newly isolated genes are now being assayed routinely EDTA, and RNA was prepared with RNAZOL (Bio-
by this approach—and since, often on the basis primar- tecX), according to recommended procedures. The RNA
ily or solely of the observed expression from the Xi in was quantitated spectrophotometrically and was re-
somatic cell hybrids, the number of genes described as verse-transcribed with Moloney murine leukemia virus
escaping inactivation increases—it becomes important reverse transcriptase (GIBCO-BRL), with random-hex-
to address whether mouse/human somatic-cell hybrids amer priming, as described elsewhere (Brown et al.
accurately reflect the expression of a large number of 1990). The primers used to amplify products for each
X-linked genes in human cells. Therefore, we undertook gene are listed in table 1. Each primer pair was designed
a survey of expression of 33 X-linked genes in a series specifically to amplify human cDNA and to not amplify
of somatic-cell hybrids, to evaluate the stability of X- mouse cDNA. As controls, all primer pairs were checked
linked gene expression in both Xa- and Xi-containing for mouse cDNA amplification of the same size, and all
hybrids. For those genes for which there was prior evi- cDNAs were demonstrated to be free of DNA contami-
dence of inactivation status, the somatic cell–hybrid nation at the highest concentration of cDNA used by
panel showed complete concordance with prior data. amplification of RNA without reverse transcription.
Overall, however, Ç15% of the genes tested showed Amplification generally consisted of 30–35 cycles at
heterogeneous expression within the panel of hybrids, 94�C for 15 s, 54–55�C for 15 s, and 72�C for 40 s, in
suggesting that gene activity in somatic cells or somatic- a Perkin Elmer 9600 thermocycler, with the following
cell hybrids is more variable than generally believed, exceptions: AR and FMR1 were amplified for 30 cycles
perhaps reflecting additional levels of epigenetic control of 94�C for 15 s, 58�C for 15 s, and 72�C for 40 s.
of X-linked gene expression.

Results
Material and Methods

Expression of the genes listed in table 1 was examined
Somatic-Cell Hybrids in the panel of three Xa- and five Xi-containing human/

mouse somatic-cell hybrids, by RT-PCR amplificationThe isolation and culture of the mouse/human so-
matic-cell hybrids retaining either the human Xa or the of cDNA. The complete results are summarized in table

2 and include several genes that have been analyzedhuman Xi has been described elsewhere (Brown and
Willard 1989; Willard et al. 1993). A panel of eight elsewhere in only a subset of the full panel shown here

(see references in table 1). In most instances, a series ofindependent hybrids was used for this study, three con-
taining an Xa and five containing an Xi. Two of the Xa- fivefold cDNA dilutions from each of the hybrids was
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amplified, and, for each gene from which expression to more completely test the hypothesis that X chromo-
somes in somatic-cell hybrids faithfully retain the prop-was detected, amplification was observed in at least two

dilutions. Individual hybrids were generally consistent erties of an active or inactive X in female somatic cells.
in the number of dilutions for which amplification was

X Inactivation in Somatic-Cell Hybridsdetectable for a particular gene. However, as expected,
expression levels varied significantly among the genes For nine of the genes examined here, there was prior

evidence of X inactivation in human tissues. In othertested, presumably reflecting differences in their steady-
state RNA levels. studies, the PDHA1, AR, PGK1, HPRT, IDS, ALD,

and G6PD genes have been shown to be subject to XThe amplification products observed for several of
these genes are shown in figure 1. In other studies, the inactivation, by the demonstration of mosaic expression

in heterozygous females (Davidson et al. 1963; Rosen-XE169 gene has been suggested to escape X inactiva-
tion, on the basis of expression from two Xi-containing bloom et al. 1967; Migeon et al. 1968, 1977; Gartler et

al. 1972; Meyer et al. 1975; Capobianchi and Romeohybrids (Agulnik et al. 1994; Wu et al. 1994). Consistent
with those data, this gene is amplified from all hybrids 1976; Brown et al. 1989; Kirchgessner et al. 1995),

whereas the analysis of expression of FMR1, IDS, andcontaining either the Xa or the Xi in the current study
(fig. 1). Similarly, primers for an expressed sequence OCRL in individuals with X-chromosome rearrange-

ments has shown these genes to be subject to X inactiva-tag (EST), WI-12682, amplified cDNA from all hybrids,
whereas the primers for the RP3, CCG1, DDP, OCRL, tion (Attree et al. 1992; Kirchgessner et al. 1995). With

the few exceptions noted in table 2, all of these genesIDS, and G6PD genes amplify only cDNA from those
hybrids that retain an Xa. Among other controls, it were also found to be expressed only from the Xa in the

somatic cell–hybrid panel examined here. This confirmsshould be noted that two other genes known to escape
inactivation (MIC2 and RPS4X; Goodfellow et al. 1984; that, to a very substantial degree, expression in somatic-

cell hybrids reflects expression in human somatic cells.Schneider-Gadicke et al. 1989) were expressed in all
eight hybrids, whereas XIST, which is transcribed only Of the additional genes examined that were subject

to inactivation, nine had been demonstrated, by earlierfrom the Xi (e.g., see Brown et al. 1992), was expressed
in the five Xi-containing hybrids but not in the three studies, to be subject to inactivation, by the analysis of

transcription or protein expression in a limited numberXa-containing hybrids (table 2).
For 28 of the genes tested, expression in the hybrids of somatic-cell hybrids; these include the PRPS1 and

PRPS2, POLA, and ANT2 genes examined by otherswas concordant, being present in all three Xa-containing
hybrids (or absent in the case of XIST) and present (6 (Wang et al. 1985, 1992; Scheibel et al. 1993), as well

as the ARAF1, TIMP1, ELK1, ZXDA/B, and XPCTgenes) or absent (22 genes) in all five Xi-containing hy-
brids. Thus, on the basis of this analysis, 22 genes were genes, which we elsewhere had analyzed in a subset of

the hybrids analyzed here (Brown et al. 1990; Greig etdeemed to be subject to X inactivation, whereas 6 genes
can be said to escape inactivation (table 2). al. 1993; Lafreniere et al. 1994; Carrel et al. 1996). On

the basis of cDNA-dilution experiments performed forFor the remaining five genes analyzed, amplification
was not consistently present or absent among all of the most of the genes in this study, for genes subject to X

inactivation, expression from the Xi was õ5% of thatXi- or Xa-containing hybrids (fig. 2 and table 2). Four
of these genes (FMR1, TIMP1, DXS423E, and ALD) seen from the Xa, and, for many such genes, expression

from the Xi was demonstrated to be õ0.2% that of thewere expressed in one or more, but not all, of the five
Xi hybrids tested, whereas one gene (AR) was expressed Xa, confirming the transcriptional basis for X inactiva-

tion (Graves and Gartler 1986; Brown et al. 1990).in only two of the three Xa-containing hybrids.
Notably, among the transcribed sequences that we

have analyzed are three X-linked ESTs. Although defin-Discussion
itive proof that these correspond to actual genes is cur-
rently lacking for most such ESTs, the large number ofIn order to gain insight into the organization of the

human X chromosome, with respect to X inactivation, ESTs currently being described and mapped to chromo-
somes, as part of the human genome project (e.g., seeas well as to evaluate objectively the use of a somatic

cell–hybrid system for studying X inactivation, we have Schuler et al. 1996), makes them an attractive source of
potential genes for expanding these analyses to the levelexamined the expression of 33 X-linked genes in a series

of eight mouse/human somatic-cell hybrids, three con- of the entire X chromosome. That some ESTs appear to
escape inactivation whereas others are subject to inacti-taining different active X chromosomes and five con-

taining different inactive X chromosomes. Although vation (table 2; Miller et al. 1995) argues that assaying
the status of their transcription from inactive X chromo-some of these genes have been examined elsewhere, by

us or by others, in a limited number of hybrids, these somes is meaningful, notwithstanding their current state
as unproved genes.analyses have been extended to a common set of hybrids,
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Table 1

Human X-Linked Genes Analyzed for X-Inactivation Status

Product
Size

Genea Gene Product/Disease Primers Reference (bp)

1: ACCCAGTGCTGGGGATGACT
MIC2 Cell-surface antigen Darling et al. (1986) 360

2: TCTCCATGTCCACCTCCCCT
PRPS2 Phosphoribosyl pyrophospate A: CTCCGCCACCTCCTCCGC

Roessler et al. (1989) 270
synthetase 2 B: TGATGAGGAGTTCCATCAGG

PDHA1 Pyruvate dehydrogenase subunit; lactic 3: CGAATGGAATGGGAACGTCTGT
Dahl et al. (1987) 237

acidosis 4: CGACTTCTCGTGTACGGTAACT
1: AGATTAAACAGAGCAGGCTT

POLA DNA polymerase alpha Wong et al. (1988) 320
2: ACTGCCATACTGAAATACAT
1: ACAACACCAAGCAAAGACATG

RP3 Retinitis pigmentosum 3 Meindle et al. (1996) 457
2: AGGGAGAATTTGAGATACACA
1: GAGCGGGGACTTTGTCTCCT

UBE1 Ubiquitin-activating enzyme subunit E1 Carrel et al. (1996) 150
7: CTTTGACCTGACTGACGAT

PCTK1 PCTAIRE-1; cdc2-related protein h4: CACGCCAACATCGTTACGCT
Carrel et al. (1996) 286

kinase h7: TGGGATTGACTTGGCTCGG
B: TCAGCAAAATCTCCAGCAAC

ARAF1 ARAF-1 proto-oncogene Mark et al. (1986) 482
3: TGGAGATGGAGGAGCTCCCA
1: AGATCCAGCGCCCAGAGAGA

TIMP1 Tissue inhibitor of metalloproteinases 1 Brown et al. (1990) 147b

2: CCCTGATGACGAGGTCGGAA
A: GGACCTAGAGCTTCCACTCA

ELK1 ELK1 proto-oncogene Rao et al. (1989) 388
B: AGAGCATGGATGGAGTGACC
1: ACCTGAGGAGCCTCCTAACT

XE169/SMCX X-linked homologue of H-Y antigen Wu et al. (1994) 195
2: CAGTCAACTGTGGCAACAGCG

DXS423E Anonymous member of condensation 3A: AGGCATAGTGATGCTCCTGT
Brown et al. (1995) 179

protein family 4A: CGATGTTTTTGAGATCTGTGC
C: CTCTTACAAGCTCAAGAGGC

ZXDA/B Zinc-finger proteins A and B Greig et al. (1993) 510
D: ACATGAACCTCCGGTCATCG

AR Androgen receptor; androgen
1A: AGGAAAGCGACTTCACCGCA

insensitivity; spinal bulbar muscular Tilley et al. (1989) 280
1B: GAGCTCCATAGTGACACCCA

atrophy
f: AGAGGCCGTGTAGCGTCG

p54nrb Nuclear RNA-binding protein Dong et al. (1993) 485
r: CTCCGCTAGGGTTCGGGT
h1: ACCAAGTGGCGTTTTCTTTC Sekiguchi et al. 220

CCG1 P250 subunit of TATA factor TFIID
h2: GAATAAGGTTTACATCATCC (1991)
1: AGCATCTGAAGCGGGTGGCA

RPS4X Ribosomal protein S4 Wiles et al. (1987) 425
2: AGCGGATGGTGCGGGCATCA
1: GGCCTGGCTGAGTGTTCATT Lafreniere et al. 600

PHKA1 Phosphorylase kinase, alpha subunit
2: TTGCAGAAGTGTCATGGACT (1993)
s1: CTCCAGATAGCTGGCAACC

XIST Inactive X-specific transcripts Brown et al. (1992) 240
s2: AGCTCCTCGGACAGCTGTAA
A3.2: TGGTGCAACGGCTCCATCCT Lafreniere et al. 180

XPCT PEST-containing transporter
A5.2: GCCCAAACGGTCAGTGAATA (1994)

PGK1 Phosphoglycerate kinase; hemolytic 1: TCGGCTCCCTCGTTGACCGA Michelson et al. 395
anemia 2: AGCTGGGTTGGCACAGGCTT (1985)

PRPS1 Phosphoribosyl pyrophospate
A: CTCTGCAGCAGCCGTGAT

synthetase 1; X-linked gout; uric Roessler et al. (1989) 270
B: CATGATCAAAAGCTCCATTAAA

acid urolithiasis
f: TACTAAGGATAATTCTGGTGGTCTG

WI-12682 EST Schuler et al. (1996) 125
r: GATAAAGGTACATGTTCTGCATTCT
f: AAGTTAAGTGAAATTTGCAGTTTT

WI-6537 EST Schuler et al. (1996) 202
r: TATATGTTGGGGTTATGTTCAAATG
f: CTTAAAGGTCATCAAATGCAAGC

SGC33825 EST Schuler et al. (1996) 139
r: CCCTTACATTTCCAAATATGCC

DDP Deafness-dystonia protein; Mohr- r: AGCAAATCATCATATAGGAAAGG
Jin et al. (1996) 222

Tranebjaerg syndrome f: TTGATAGTGGGACCACATACG
1: GGGTTGACTTCCTATCCATT Houldsworth and 353

ANT2 ATP/ADP translocase 2
2: GCTTCCCATTTTCAACCAGT Attardi (1988)

(continued )
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Table 1 (continued)

Product
Size

Genea Gene Product/Disease Primers Reference (bp)

OCRL Protein related to inositol
F: TCCTCAAACGACACGCAG

polyphosphate-5-phosphatase; Lowe Attree et al. (1992) 549
R: AAGCCCTGAAAAAACAGAAGG

oculocerebrorenal syndrome
C1: TCCTCCTGAGCAGTCAGC

HPRT Lesch-Nyhan syndrome Jolly et al. (1983) 800
C2: GGCGATGTCAATAGGACTC
1: GGCGCTAGCAGGGCTGAA Kirchgessner et al. 437

FMR1 Fragile X mental retardation
2: CCGTAAGTCTTCTGGCACA (1995)
1: GAGTTTTGCCAACCATGGAT

IDS Iduronate synthase; Hunter syndrome Wilson et al. (1990) 215
2: CGTATCCAAAGGTATGACAT
F: CACACACACTTGCTACAGTTCG

ALD Adrenoleukodystrophy Mosser et al. (1993) 359
R: AAGGGTTTTCTAGGAGGAGGG

G6PD Glucose-6-phosphase dehydrogenase; C: GATGATGACCAAGAAGCCGG
Perisco et al. (1986) 220

G6PD deficiency E: TTCTCCAGCTCAATCTGGTG

a Ordered pter-qter, on the basis of physical map positions from Nelson et al. (1995). Specific map positions are given in table 2.
b TIMP1 primers described elsewhere (Brown et al. 1990) amplify a 325-bp product (Scheibel et al. 1993), whereas the primers listed here

amplify the 147-bp product identified elsewhere (Brown et al. 1990).

Although, on the basis of the general agreement be- The number of discordant hybrids observed here
seemed surprisingly high. Indeed, previous studies of thetween results reported here and those from analysis of
stability of X inactivation have shown that gene reacti-human tissue samples described elsewhere, the use of
vation (e.g., the gain of expression from an Xi) is asomatic-cell hybrids to determine X-inactivation pat-
very rare event in human cells (Migeon et al. 1982b).terns appears to be valid, one limitation of the hybrid
Although the frequency is higher in somatic-cell hybrids,approach is that only genes that are expressed in the
localized reactivation events are still rare, being detectedhybrids can be analyzed. This limits the analysis to genes
at frequencies generally õ1 1 1006 (Kahan and DeMars(or ESTs) expressed in fibroblasts, including all
1975, 1980; Hellkuhl and Grzeschik 1978). This fre-‘‘housekeeping’’ or ubiquitously expressed genes but ex-
quency can be dramatically increased by treatment withcluding many tissue-specific genes. However, the sensi-
demethylating agents such as 5-azadeoxycytidine (Mo-tivity of the RT-PCR approach allows the detection of
handas et al. 1984; reviewed in Gartler and Goldmana low level or ‘‘illegitimate’’ expression for tissue-specific
1994), showing the importance of DNA methylation ingenes in all tissues, as demonstrated for the expression
repressing expression of genes from the Xi. Repressionof dystrophin in numerous tissues (Chelly et al. 1988).
of genes by DNA methylation has been shown to beSince it has recently been demonstrated that such illegiti-
partially dependent on the CpG density of the promotermate expression of the dystrophin gene is also subject
(Boyes and Bird 1992), and most studies of X-chromo-to X inactivation (Gardner et al. 1995), analysis of low-
some reactivation frequencies have been restricted tolevel expression by RT-PCR may provide a means to
analysis of the HPRT, PGK1, G6PD, and GLA genes,extend these analyses to tissue-specific genes or ESTs.
all of which have extensive CpG islands and show con-

Heterogeneous Gene Expression in Some Hybrid Cell cordant results in our hybrid panel. Correlation with
Lines the presence or absence of a CpG island is not complete,

Five of the 33 genes examined showed heterogeneous however, since the ALD gene, which is expressed in
expression among the Xa- or Xi-containing hybrids, two Xi-containing hybrids, also has a large CpG island
complicating the assessment of inactivation status. For (Sarde et al. 1994).
three of the genes (AR, DXS423E, and FMR1) a single Although numerous studies have examined the gain
hybrid, either one of three Xa-containing hybrids or one of expression from the Xi, little is known about the loss
of five Xi-containing hybrids, is expressed differently of expression. Extinction of gene expression in somatic-
from the other hybrids tested. Although it may appear cell hybrids can often be correlated with the chromo-
parsimonious to make, on the basis of the remaining some composition of the hybrid, since expression is in-
hybrids, conclusions regarding inactivation, unequivo- fluenced by the dosage of transcriptional regulatory fac-
cal assessment of inactivation status may be impossible tors (Peterson and Weiss 1972). Loss of gene expression

could be due to mutation resulting in loss of the gene,and, in fact, may be without meaning.
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Table 2

Expression of 33 X-Linked Genes in Panel of Active X and Inactive X Hybrids

GENES EXPRESSED INb

MAP

POSITIONa Active X Inactive X Active X and
(Mb) Hybrids Only Hybrids Only Inactive X Hybrids HETEROGENEOUS RESULTS

2 MIC2
13 PRPS2
20 PDHA1
26 POLA
40 RP3
45 UBE1
45 PCTK1
47 ARAF1
47 TIMP1 (2/5 inactive X hybrids)
47 ELK1
53 XE169
54 DXS423E (4/5 inactive X hybrids)
58 ZXDA/B
cen
64 AR (2/3 active X hybrids)
70 p54nrb
70 CCG1
72 RPS4X
72 PHKA1
74 XIST
74 XPCT
78 PGK1
. . . PRPS1
. . . WI-12682
. . . WI-6537
. . . SGC33825
100 DDP
117 ANT2
127 OCRL
132 HPRT
150 FMR1 (1/5 inactive X hybrid)
153 IDS
157 ALD (2/5 inactive X hybrids)
158 G6PD

a Approximate physical location, based on a megabase scale from pter-qter (Nelson et al. 1995); loci
without entries have been mapped between flanking loci but have not yet been placed on the megabase
physical map.

b Based on RT-PCR results in a panel of three active X and five inactive X hybrids.

loss of promoter activity, or loss of the primer-annealing The observed discordancies were found in four of
the eight hybrids examined, demonstrating that thissites. For both the AR and DXS423E genes, multiple

pairs of primers were shown to amplify products from phenomenon is not restricted to a particular hybrid,
although it is perhaps noteworthy that three hybridsgenomic DNA of the hybrids that fail to express the

gene, thus precluding either a large deletion of the gene showed discordant expression for two different genes.
Furthermore, the genes showing discordant expres-or mutation of the primer-annealing sites. Given the

relatively high frequency of heterogeneous gene expres- sion are not clustered together, ruling out a regional
effect. In fact, the DXS423E gene, which is not ex-sion in different hybrids, one hypothesis would be that

the gain or loss of expression reflects epigenetic, rather pressed in one Xi-containing hybrid, has been shown
to be located õÇ200 kb from the XE169 gene thatthan mutational, events. Whether such events are related

to X inactivation itself is unknown and will require addi- is expressed in this hybrid. Similarly, the ARAF1 gene
maps õ100 kb from the TIMP1 gene (Derry and Bar-tional study, which should be facilitated by the somatic

cell–hybrid system described here. nard 1992; Coleman et al. 1994) and is not expressed
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from G6PD A/B heterozygotes (Migeon and Kennedy
1975; Migeon et al. 1982b) or rare HAT-resistant cells
among clonal populations of cells from Lesch-Nyhan
carriers with the normal HPRT allele on the inactive X
(Migeon 1971; Migeon et al. 1988).

Thus, the heterogeneity of X-linked gene expression
noted here among Xi-containing hybrids may reflect a
more general phenomenon. The instability of expression
of a subset of X-linked genes in human somatic cells
would be of substantial biological importance, and anal-
ysis of allele-specific expression of these genes in the
parental human cell lines will be required in order to
address this possibility.

Genes That Escape X-Chromosome Inactivation
It is generally believed that most genes are subject to

X inactivation. However, the recent description of a
number of genes that escape inactivation (reviewed in
Disteche 1995; also see fig. 3) raises the issues of (a)
how common such escape from inactivation is and (b)
what allows these genes to be expressed from the other-
wise inactive X chromosome. For less than one half of

Figure 1 Expression of genes from active or inactive X-con- the genes shown (in fig. 3) as escaping X inactivation istaining hybrids. cDNA from eight human/mouse somatic-cell hybrids
there evidence for expression from the Xi other thanretaining the human active X chromosome (Xa) or the human inactive
expression in somatic-cell hybrids. This includes bothX chromosome (Xi) was amplified with primers as listed in table 1.

Shown is a negative image of ethidium bromide–stained products analysis of expression in heterozygous females and anal-
separated by agarose gel electrophoresis. From left to right, the 10 ysis of RNA in human cells with multiple X chromo-
lanes refer to the following: human female, mouse tsA1S9az31b cell somes (Race and Sanger 1975; Shapiro et al. 1979; Mi-line, t60-12, AHA11aB1, t86-B1maz1b-3a, t11-4Aaz5, t48-1a-

geon et al. 1982a; Schneider-Gadicke et al. 1989; Fisher1Daz4a, t75-2maz34-4a, LT23-1E2Buv5Cl26-7A2, and A23-1aCl5.
et al. 1990; Slim et al. 1993; Smith et al. 1993; CarrelThe primers amplify products for the genes listed to the right of each

panel. et al. 1996). The relatively large number of genes de-
scribed as escaping inactivation is partially reflective of

in either of the Xi-containing hybrids that express
TIMP1.

The heterogeneous expression observed among hy-
brids may reflect events that occurred within the so-
matic-cell hybrids themselves or, alternatively, may re-
flect heterogeneity in the original human cells used to
generate the hybrids. Although it is facile to conclude
that gene reactivation has occurred in the cells in culture,
since such reactivation is generally considered to be
more frequent in hybrids than in diploid cells (Gartler
and Goldman 1994), the frequency at which we ob-
served discordant expression is much higher than that
previously detected for reactivation of genes from the
Xi, and it is thus important to consider whether the
discordant expression detected here may reflect a differ-
ent phenomenon. Although gene expression is generally

Figure 2 Heterogeneous expression for some genes in some ac-considered to be stable and consistent from cell to cell
tive or inactive X-containing hybrids. cDNA from eight human/mousewithin a cell population, there are in fact very few data
somatic-cell hybrids retaining the human active X chromosome (Xa)that have addressed this question directly for human
or the human inactive X chromosome (Xi) was amplified with primers

diploid cells. Indeed, among X-linked genes, such heter- as listed in table 1. The lanes are the same as in figure 1. The primers
ogeneity would only have been appreciated in studies amplify products for the genes listed to the right of each panel. Hybrids

showing discordant results are indicated by a black dot.designed to detect either G6PD heterodimers in samples
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the X-inactivation center, one of very few genes that
both map to the so-called ancestral X chromosome
(Graves and Watson 1991) and escape inactivation (fig.
3). Although this may indicate that relatively few ances-
tral X-linked genes escape inactivation, it may in part
also reflect a tendency to examine a larger number of
Xp genes in this regard. Resolution of this question, as
well as the issue of gene-specific versus regional control
of X inactivation, will await determination of inactiva-
tion status of a greater number of genes that are more
densely clustered along the length of the X chromosome,
efforts that will clearly be aided by the Human Genome
Project.

Genes that escape X inactivation may show patterns
of expression that are quite different from the classical
patterns of X-linked gene expression. X-linked inheri-Figure 3 Summary of expression of genes from the inactive X
tance is characterized by an excess of affected males andchromosome. The genes listed on the right of the schematic chromo-

some have been demonstrated, in this and/or previous studies, to es- by no male-to-male transmission, with female carriers
cape X inactivation, on the basis of consistent expression from multi- showing a range of expression from unaffected to com-
ple inactive X hybrids, whereas those on the left show expression in pletely affected, depending on the pattern of X inactiva-at least two, but not all, inactive X hybrids. Genes from the Xp/Yp

tion. However, for XY-homologous genes, if a gene es-or Xq/Yq pseudoautosomal region are indicated in boldface. Recent
caping inactivation shows equivalent expression instudies, by others, of some X-linked genes are described: the DFFRX

gene, by Jones et al. (1996); the ARSD and ARSE genes, by Franco males and females (such as is the case for RPS4X), then
et al. (1995); and the IL9R gene, by Vermeesch et al. (1997). Other females may be affected as frequently as males (de-
studies have been summarized by Disteche (1995). Cytogenetic loca- pending on the relative mutation rates of the X- and Y-tions are from Nelson et al. (1995) and L. Carrel (data not shown).

linked copies of the gene), since both males and females
will be affected only by homozygous recessive muta-
tions. For genes that are expressed from the Xi and thatthe extensive mapping and analysis of inactivation status

within the pseudoautosomal and adjacent region and do not have a Y homologue, there will normally be more
expression in females than males (in the absence of somewithin other X-Y homologous regions, as well as of

specific strategies to detect genes on the basis of their other dosage-compensation mechanism). Unless this
overexpression is required for normal development, het-expression from the inactive X chromosome (Ellison et

al. 1992). Nonetheless, although many of the genes ana- erozygous females will only very rarely manifest an X-
linked disorder, which will be a true recessive trait. Last,lyzed in our studies were chosen because of prior knowl-

edge about their inactivation status, §17 of the genes characterization of genes that escape inactivation may
permit their assessment as candidates for a role in de-or ESTs were selected without any obvious bias in this

respect. Notably, 4 of these 17 escape inactivation. Ex- termining phenotypic effects associated with X-chromo-
some aneuploidy (Zinn et al. 1993; Willard 1995).trapolated to the entire chromosome (a step that may or

may not be valid), this finding suggests that a significant
proportion of all X-linked genes may escape inactiva-
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